
CS5510

Professor Ian Gorton

Northeastern University - Seattle



CONCURRENCY: 

INTRODUCTION

Week 9

2



3

http://jcip.net/



• Why threads?

• Simple threads in Java

• Problems with threading

• Synchronization primitives

• Thread coordination

• Thread states

• Thread pools

• Thread-safe collections

Overview



WHY THREADS?

5



6

Concurrency is Fundamental to Many Systems

• Distributed systems are inherently 

concurrent

– Events happen on different nodes 

at the same time

– Unpredictable order of events

• Concurrency needed on each node 

to provide:

– Responsiveness to requests

– Throughput 

• Ability to handle multiple 

simultaneous requests



7

Why Concurrency?

• Concurrent execution is necessary in 
many systems:

• Natural solution to many problems

• Increase performance, e.g. do work while 
waiting for disk accesses

• Necessary to exploit multicore



8

Address Space 



9

Units of Concurrency

• Processes - different executables - comprise

– virtual address space

– Code

– Security context

– Environment variables

– Handles to system object (e.g. sockets)

– A main thread of execution

• A process can create multiple threads …



10

Threads

• Threads are lightweight compared to processes

– share the same address space and share data and code

– Allocated their own stack space to support independent execution

• Context switching between threads is less expensive than 

between processes

• Cost of thread intercommunication is lower than process 

intercommunication



SIMPLE THREADS IN JAVA



12

Java Threads

public class Thread extends Object implements Runnable

public interface Runnable {

void run();

}

• Write a class that 

– implements Runnable, 

– overrides the run() method

• Instantiate class and call start()

http://docs.oracle.com/javase/7/docs/api/java/lang/Object.html
http://docs.oracle.com/javase/7/docs/api/java/lang/Runnable.html


13

Java Threads – Simple Example

https://github.com/gortonator/SimpleThreadCode/tree/master/src/threadexamples/ian/edu

public class NamingThread implements Runnable {

private String name;

public  NamingThread () {

name = "Anon";

}

public NamingThread (String threadName) {

name = threadName;

}

@Override

public void run() {

System.out.println (name + " is " + Thread.currentThread());

}

}



14

Java Threads – Simple Example

public class ThreadStartOrderExample {

public static void main(String arg[]) {

Thread th1 = new Thread (new NamingThread("Pep is a genius")) ;

Thread th2 = new Thread (new NamingThread("Mourinho is an idiot"));

Thread th3 = new Thread (new NamingThread(“doh”)) ;

System.out.println ("Ready to roll ...");

th1.start();

th2.start();

th3.start();

System.out.println ("main thread exiting " + Thread.currentThread());

}

}



15

Java Threads

• Alternative is to extend java.lang.Thread class

• See this reference for a more detailed treatment of the 

differences

http://manikandanmv.wordpress.com/tag/extends-thread-vs-implements-runnable/


16

Thread Object Example



PROBLEMS WITH THREADS



18

• Problems with concurrency

– Race conditions

– Deadlocks

• Source of problems

– Non-determinism

– Interleavings

Concurrency makes things ‘fun’



19

First Problem: Shared Variables

• Multiple independent threads make changes to same variable at 

same time

1. read value from memory to register

2. change value in register

3. write register value back to memory

thread 1: x=x+6

thread 2: x=x+1

• The result? 



20

Welcome to Race Conditions

Thread 1 Thread 2

Reads (x) into register

Register value + 6

Writes register value to 
(x)

Reads (x) into register

Register value + 1

Writes register value to 
(x)

Thread 1 Thread 2

Reads (x) into register

Register value + 6

Reads (x) into register

Register value + 1

Writes register value to 
(x)

Writes register value to 
(x)



21

Race Conditions

• Same program, different results

– Depends on the manner in which CPU schedules 

execution

– Different interleavings produce different outcomes

• Extremely hard to debug

– Not reproducible

– These are extremely unpleasant when they occur in 

production systems



22

Root Cause: Non-Determinism

• Sequential programs exhibit deterministic behavior

• Race conditions are caused by non-deterministic behavior

• Two kinds of non-determinism

– observable – program may give different result

– non-observable – program may execute differently, but this does 

not affect the result

• Thread 1 { a=2; b=a+6; }

• Thread 2 { x=9; y=x-3; }

• Whatever order the scheduler runs these threads in, the result will always be the same

– No shared variables



23

Thread Interleaving Example

public class Interleaving {

public void show() {

for (int i = 0; i < 5; i++) {

System.out.println(Thread.currentThread().getName() + " - Number: " + i);

}

}

public static void main(String[] args) {

final Interleaving main = new Interleaving();

Runnable runner = new Runnable() {

@Override

public void run() {

main.show();

}

};

new Thread(runner, "Thread 1").start();

new Thread(runner, "Thread 2").start();

}

}

https://www.javacodegeeks.com/2014/08/java-concurrency-tutorial-atomicity-

and-race-conditions.html



SYNCHRONIZATION 

PRIMITIVES

24



• Check-then-act

• Read-modify-write

• Clone the repo at:

– https://github.com/xpadro/concurrency

Two common causes for race conditions



Check-then-act – Race Condition

26

public class UnsafeCheckThenAct {

private int number;

public void changeNumber() {

if (number == 0) {

System.out.println(Thread.currentThread().getName() + " | Changed");

number = -1;

}

else {

System.out.println(Thread.currentThread().getName() + " | Not changed");

}

}

public static void main(String[] args) {

final UnsafeCheckThenAct checkAct = new UnsafeCheckThenAct();

for (int i = 0; i < 50; i++) {

new Thread(new Runnable() {

@Override

public void run() {

checkAct.changeNumber();

}

}, "T" + i).start();

}

}

}



27

Eradicating Race Conditions

• Use locks to impose ordering constraints

– Lock shared variables so they can be accessed only by a single 

thread at once

• Serialized access to shared resources

– Implements non-observable non-determinism

– Locks sometimes known as semaphores



28

Locks

• Locks serialize access to shared variables

• Each thread wishing to access a variable:

– takes the lock

– changes the variable

– releases the lock

• If the lock is set, all other threads wait for it to be released

– Which thread proceeds next?

• Think about solving the race condition on the previous slide



public class UnsafeCheckThenAct {

private int number;

public synchronized void changeNumber() {

if (number == 0) {

System.out.println(Thread.currentThread().getName() + " | Changed");

number = -1;

}

else {

System.out.println(Thread.currentThread().getName() + " | Not changed");

}

}

public static void main(String[] args) {

final UnsafeCheckThenAct checkAct = new UnsafeCheckThenAct();

for (int i = 0; i < 50; i++) {

new Thread(new Runnable() {

@Override

public void run() {

checkAct.changeNumber();

}

}, "T" + i).start();

}

}

}

Check-then-act – No Race Condition



30

Java synchronized methods

public class SynchronizedCounter { 

private int c = 0; 

public synchronized void increment() { c++; } 

public synchronized void decrement() { c--; } 

public synchronized int value() { return c; } 

}

• Known as critical section

– it is not possible for two invocations of any synchronized methods 

on the same object to interleave 

– less error-prone as release is automatic



31

Definition - Atomicity

Operations A and B are atomic with respect to each 

other if, from the perspective of a thread executing A, 

when another   thread executes B, either all of B has 

executed or none of it has.

An atomic operation is one that is atomic with respect 

to all operations that operate on the same state



• Synchronization is implemented using monitors. Each 

object in Java is associated with a monitor, which a 

thread can lock or unlock. 

• Only one thread at a time may hold a lock on a monitor. 

• Any other threads attempting to lock that monitor are 

blocked until they can obtain a lock on that monitor. 

• A thread t may lock a particular monitor multiple times; 

each unlock reverses the effect of one lock operation.

Monitor Locks



Read-Modify-Write – Race Condition
public class UnsafeReadModifyWrite {

private int number;

C

public void incrementNumber() {

number++;

}

public int getNumber() {

return this.number;

}

public static void main(String[] args) throws InterruptedException {

final UnsafeReadModifyWrite rmw = new UnsafeReadModifyWrite();

for (int i = 0; i < 1000; i++) {

new Thread(new Runnable() {

@Override

public void run() {

rmw.incrementNumber();

}

}, "T" + i).start();

}

Thread.sleep(6000);

System.out.println("Final number (should be 1000): " + rmw.getNumber());

}

}

Compound operation –

synchronized needed



• Run UnsafeReadModifyWrite.java

• Can you see the race condition?

Reproducing the error

34



35



36

public static void test() throws InterruptedException {

final UnsafeReadModifyWriteWithLatch rmw = new UnsafeReadModifyWriteWithLatch();

for (int i = 0; i < NUM_THREADS; i++) {

new Thread(new Runnable() {

@Override

public void run() {

try {

rmw.startSignal.await();

rmw.incrementNumber();

} catch (InterruptedException e) { 

} finally {

rmw.endSignal.countDown();

}

}

}, "T" + i).start();

}

Thread.sleep(2000);

rmw.startSignal.countDown();

rmw.endSignal.await();

System.out.println("Final number (should be 1_000): " + rmw.getNumber());

}

}

UnsafeReadModifyWriteWithLatch

What if we remove this?



Another Solution – Atomic Variables

37

public class SafeReadModifyWriteAtomic {

private final AtomicInteger number = new AtomicInteger();

public void incrementNumber() {

number.getAndIncrement();

}

public int getNumber() {return this.number.get();}

// rest is same as previous

import java.util.concurrent.atomic.AtomicInteger;

More Atomic types explained at:

http://tutorials.jenkov.com/java-util-concurrent/index.html



38

Sharing Structures

• Consider a linked list with explicit size variable

1. read size variable

2. add new element to the list at end

3. increment and write back size variable

• size variable and list elements must be synchronized

• concurrent access of non thread-safe structures is dangerous

– none of java.util.* are thread-safe



The Dining Philosophers Problem



40



41

while(true) { 

// Initially, thinking about life, universe, and everything

think();

// Take a break from thinking, hungry now

pick_up_left_fork();

pick_up_right_fork();

eat();

put_down_right_fork();

put_down_left_fork();

// Not hungry anymore. Back to thinking!

}

Pseudo-Code for a Philosopher



42



43

public class Philosopher implements Runnable {

private final Object leftFork;

private final Object rightFork;

Philosopher(Object left, Object right) {

this.leftFork = left;

this.rightFork = right;

}

private void doAction(String action) throws InterruptedException {

System.out.println(Thread.currentThread().getName() + " " + action);

Thread.sleep(((int) (Math.random() * 100)));

}

public void run() {

try {

while (true) {

doAction(System.nanoTime() + ": Thinking"); // thinking

synchronized (leftFork) {

doAction(System.nanoTime() + ": Picked up left fork");

synchronized (rightFork) {

doAction(System.nanoTime() + ": Picked up right fork - eating"); // eating

doAction(System.nanoTime() + ": Put down right fork");

}

doAction(System.nanoTime() + ": Put down left fork. Returning to thinking");

}

}

} catch (InterruptedException e) {

Thread.currentThread().interrupt();

}

}

}



44

Deadlock

• 2 threads sharing access to 2 shared variables via locks

1. thread 1: takes lock a

2. thread 2: takes lock b

3. thread 1: blocks on b

4. thread 2: blocks on lock a

• Deadlock!!

– Neither thread can proceed

– This violates ‘liveness’ – something good eventually happens



45

This is why concurrency is hard

• Too few ordering constraints => race conditions

• Too many ordering constraints => deadlocks

• Hard/impossible to reason about based on modularity

– If an object is shared by multiple threads, need to think about what all 

threads could do 

• Thorough testing is impossible 
– Non-determinism leads to an infinite number of possible interleavings

– Controlled by the scheduler and events, not the program



THREAD COORDINATION



47



Producer Consumer – First cut

48

int itemCount = 0;

procedure producer() 

{

while (true) 

{

item = produceItem();

if (itemCount == BUFFER_SIZE) 

{

sleep();

}

putItemIntoBuffer(item);

itemCount = itemCount + 1;

if (itemCount == 1) 

{

wakeup(consumer);

}

}

}

procedure consumer() 

{

while (true) 

{

if (itemCount == 0) 

{

sleep();

}

item = removeItemFromBuffer();

itemCount = itemCount - 1;

if (itemCount == BUFFER_SIZE - 1) 

{

wakeup(producer);

}

consumeItem(item);

}

}



• Consumer reads itemCount, notices it's zero and moves 

inside the if block.

• Before calling sleep, the consumer is interrupted 

• Producer creates an item, puts it into the buffer, and 

increases itemCount.

• Because the buffer was empty, the producer tries to wake 

up the consumer.

• Unfortunately the consumer wasn't yet sleeping, and the 

wakeup call is lost. 

• The producer will loop until the buffer is full, after which it 

will also go to sleep.

Deadlock

49



50



51

Guards

• Producer-Consumer style examples 

require ‘guards’

• Producer stores message in a 

shared buffer

– Except when full

• Consumers retrieve  messages from 

buffer

– Wait when empty

Producer

Consumer



52

Java Guards (aka Monitors)

• Wait() and notify() statements

• Wait and notify provide thread inter-communication that 

synchronizes on the same object.

– final void wait(long timeout) throws InterruptedException

– final void wait() throws InterruptedException

– final void notify()

– final void notifyAll()

• Let’s work through an example …

– see ProducerConsumerExample



public class Buffer {

// Message buffer between producer to consumer.

// private String message;

// True if consumer must wait for producer to send      

//message,

// false if producer must wait for consumer to retrieve 

message.

private boolean empty = true;

public synchronized String retrieve() {

// Wait until message is available.

while (empty) {

try {

System.out.println("Waiting for a message");

wait();

} catch (InterruptedException e) {}

}

// Toggle status.

empty = true;

// Notify producer that buffer is empty

notifyAll();

return message;

}

public synchronized void put(String message) {

// Wait until message has been retrieved.

while (!empty) {

try { 

wait();

} catch (InterruptedException e) {}

}

// Toggle status.

empty = false;

// Store message.

this.message = message;

// Notify consumer that message is 

//available

notifyAll();

}

}



54

Class Exercise

Look at the BoundedBufferExample in the repo you cloned and 

make sure you understand how it works.

• What happens if you start more than producer thread?

• More than one consumer thread?



THREAD STATES



56

Thread States

• New Thread state (Ready-to-run state)

– Created but not started

• Runnable state (Running state)

– Started and either running or waiting to run

• Not Runnable state

• Dead state

– Stop() called or run() terminates



57

Not Runnable

• A thread is Not Runnable if one of the following occurs:

– When sleep() is invoked 

• Thread.currentThread().sleep(1000);

– When suspend() is invoked

– When the wait() method is invoked 

• waits for notification of a free resource

• waits for completion of another thread 

• waits to acquire a lock of an object.

– The thread is blocking on an I/O request



58

Thread Resumption

• If a thread is asleep:

– the sleep period must elapse or interrupt() method called

• If a thread is suspended: 

– its resume() method must be called

• If a thread is waiting on a condition variable, 

– an object owning the variable must relinquish it by calling

either notify() or notifyAll().

• If a thread is waiting on I/O, then I/O must complete



59

Thread Priority

• In Java every thread has a priority

– Higher priority threads get scheduled more frequently than lower 

priority threads

• A Java thread inherits its priority from its parent

– MIN_PRIORITY (0) Lowest Priority

– NORM_PRIORITY (5) Default Priority

– MAX_PRIORITY (10) Highest Priority



60

Thread Scheduling

• The thread scheduler chooses the Runnable thread with 

the highest priority for execution.

• When multiple threads to choose from, scheduler chooses one 

in a round-robin fashion. The chosen thread will run until:

– a higher priority thread becomes Runnable. (Pre-emptive)

– it yields, or its run() method exits

– its time allotment has expired (time-slicing)



61

Reentrancy

• Every Java object has a lock associated with it

– Known as the intrinsic lock

– Aka monitor or mutex locks

• Synchronized methods exploit this intrinsic lock

– Lock acquired by executing thread before entering a 

synchronized block

– Lock released automatically when the thread exits the 

synchronized block



62

Does this Deadlock?

public class hipsterBaseClass {

public synchronized void doHipsterStuff() {

// random hipster behaviour

}

}

public class capitolHillBar extends hipsterBaseClass

{

public synchronized void orderDrinks() {

// get drinks order

super.doHipsterStuff();

}

}



63

Reentrancy

• Intrinsic locks are reentrant

– If a thread tries to acquire a lock it already holds, it succeeds

– Each lock has an acquisition count and owning thread

– Count can only be incremented above 1 by same owning 

thread

• Reentrancy facilitates encapsulation of locking behavior, 

and simplifies OO concurrent code



64

Performance and Scalability Issues with Threads

• Thread safety requires the internal state of an object to be 

protected from concurrent updates

– Updates must be atomic and serialized

• What if an object has no state that persists between calls?

• Or cannot be modified by a calling thread?

• Is this thread-safe?



Stateless Servlet (jcip p13)

public class StatelessFactorizer extends GenericServlet implements 

Servlet {

public void service(ServletRequest req, ServletResponse resp) {

BigInteger i = extractFromRequest(req);

BigInteger[] factors = factor(i);

encodeIntoResponse(resp, factors);

}



Stateless and Immutable

objects 

are 

always 

thread-safe



THREADS POOLS

67



• The java.util.concurrent package contains a 

range of utilities to simplify multithreaded 

programs

– Executor framework

– Thread-safe collections

Java.util.concurrent

68



69

The Executor Framework

public interface Executor

An object that executes submitted Runnable tasks. 

For example, rather than invoking new 

Thread(new(RunnableTask())).start() for each of a set of tasks, you 

might use:

Executor executor = anExecutor;

executor.execute(new RunnableTask1());

executor.execute(new RunnableTask2());

...

http://docs.oracle.com/javase/1.5.0/docs/api/java/util/concurrent/Executor.html#method_summary



70

Executor

• Supports asynchronous task execution

• Decouples task submission from task executions

– Supports different task execution policies

– Provides task lifecycle support

– Has hooks for adding statistics, management, monitoring

• Executors provide a factory method to create an Executor 

with desired policies.

https://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Executors.html


71

Executor – Fixed Size thread Pool

ExecutorService executorService =   

Executors.newFixedThreadPool(SIZE);

executorService.execute(new Runnable() {

public void run() {

System.out.println("Asynchronous task");

}

});

executorService.shutdown();



Thread Pools



73

Execution Policies

• Executors decouple the submission of a request from the 

execution policy used

• Makes it easy to change policies to suit deployment 

hardware – just choose a different Executors interface

• Policies specific things like:

– How many concurrent threads?

– How many queued requests?

– What to do if server overloaded?

– Execution priorities/order (LIFO, FIFO), etc …



• no way to obtain the result of a Runnable

– if necessary. 

• Or find out when threads have completed

• You will have to use a Callable or Future

More on Executors



submit(runnable)

75

Future future = executorService.submit(new Runnable() {

public void run() {

System.out.println("Asynchronous task");

}

});

future.get();  //returns null if the task has finished correctly.



submit(Callable)

76

Future future = executorService.submit(new Callable(){

public Object call() throws Exception {

System.out.println("Asynchronous Callable");

return "Callable Result";

}

});

System.out.println("future.get() = " + future.get());



ExecutorService Shutdown

77

• Must shutdown an executor

– executorService.shutdown();

• Stops accepting new requests but does not 

shutdown immediately

• Must wait for all threads to complete

– executorService.awaitTermination();



THREAD-SAFE COLLECTIONS

78



• Standard collection classes are NOT thread-safe

• java.util.concurrent package includes additions to the Java 

Collections Framework. 

– BlockingQueue: FIFO that blocks or times out when you attempt to add to a full 

queue, or retrieve from an empty queue.

– ConcurrentMap is a subinterface of java.util.Map that defines useful atomic 

operations. Also ConcurrentHashMap, which is a concurrent analog of 

HashMap.

– ConcurrentNavigableMap is a subinterface of ConcurrentMap that supports 

approximate matches. Also ConcurrentSkipListMap, which is a concurrent 

analog of TreeMap.

Thread-safe collection classes

79



• HashMap divided into buckets

– 16 by default

• A lock is applied at the bucket level

– Allows safe concurrent modification

ConcurrentHashMap

80



ConcurrentHashMap

81



• Atomic operations:

– putIfAbsent()

– remove()

– replace()

• Trade-offs - relaxed consistency for 

– Map.size()

– Map.isEmpty()

– iterators

ConcurrentHashMap

82



BlockingQueue

83



BlockingQueue Example

84

class Producer implements Runnable {

private final BlockingQueue queue;

Producer(BlockingQueue q) { queue = q; }

public void run() {

try {

while (true) { queue.put(produce()); }

} catch (InterruptedException ex) { ... handle ...}

}

Object produce() { ... }

}

class Consumer implements Runnable {

private final BlockingQueue queue;

Consumer(BlockingQueue q) { queue = q; }

public void run() {

try {

while (true) { consume(queue.take()); }

} catch (InterruptedException ex) { ... handle ...}

}

void consume(Object x) { ... }

}

class Setup {

void main() {

BlockingQueue q = new 

LinkedBlockingQueue();

Producer p = new Producer(q);

Consumer c1 = new Consumer(q);

Consumer c2 = new Consumer(q);

new Thread(p).start();

new Thread(c1).start();

new Thread(c2).start();

}

}



• Java 9 immutable collections 

• https://docs.oracle.com/javase/9/docs/api/j

ava/util/Collections.html

And hot(-ish) off the presses

85

https://docs.oracle.com/javase/9/docs/api/java/util/Collections.html


86

Summary

• Concurrency is fundamental to software systems

• Introduces problems of race conditions and deadlocks

• Synchronization required as a solution

• Threads move through various states during their 

lifetime

• Scheduler makes decisions on which thread to run 

based on their state and priority

• Executors and concurrent utility classes simplify 

threaded programs



87

References

1. http://manikandanmv.wordpress.com/tag/extends-thread-vs-

implements-runnable/

2. http://www.javamex.com/tutorials/threads/how_threads_work.s

html

http://manikandanmv.wordpress.com/tag/extends-thread-vs-implements-runnable/



